
487

sTOrage fOunDaTiOn ChapTer 15:
sOfTWare sTaCk
by Volker Herminghaus

software Overview15.1
Veritas Volume Manager operates in both user space and kernel space: User mode programs
like vxassist interact with other user space programs like vxconfigd to create, modify, and
delete volumes and other virtual objects. This is done during preparation of the volumes (i.e.
creating them or starting them after importing a disk group) as well as during maintenance
on the volumes (like resizing them or handling snapshots) or diagnosis (like running the
vxprint and vxdisk list commands). In a running system where all necessary volumes
have been started the only parts of VxVM actually needed are the device drivers that map
volume regions to physical disk regions by applying the plex mapping table to I/O request
(vxio) and for multiplexing disk paths (vxdmp). Of course it would be a very radical approach
to try it, and full functionality could not be guaranteed, but it is in fact possible to run a
UNIX machine using VxVM volumes without a single Volume Manager process running. It
would not be possible to do any kind of maintenance on the volumes, like starting or stop-
ping them, or importing or deporting a disk group, but those volumes that have already
been started would be running perfectly well. This was a deliberate design decision by the
developers because it eliminates a possible single point of failure: If a user process was
necessary to enable volume I/O, then a system might be rendered unusable if this process
crashed or was stopped by the user. Device drivers, unlike user processes, cannot be killed
or unconfigured "against their will". Having the system be independent from user space
processes for the bulk of the work (user I/O) was therefore a wise thing to do.

V. Herminghaus and A. Sriba, Storage Management in Data Centers,

DOI: 10.1007/978-3-540-85023-6_15, © Springer-Verlag Berlin Heidelberg 2009

488

Storage Foundation Software stack

Easy
Sailing

Vx

Structure of Storage Foundation Components15.1.1

The graphic depiction shown below outlines the main components of storage foundation
and their interaction. It serves as the basis for understanding the more complex environ-
ment of a full storage foundation installation. Depicting all the interdependencies would
require a much larger canvas, and it is not really necessary to understand every aspect of
the software stack; one can do a lot of useful work with just the basics.

The upper part of the diagram shows the user level programs, while the lower part
shows the kernel level drivers, devices, and memory regions. The black arrows identify
user-I/O and the grey arrows stand for control or metadata I/O. For instance, reading the
diagram top down from the left we can see that a vxassist command to create a new
volume contacts vxconfigd, which in turn contacts the config device. The config device
is implemented by the vxspec device driver. The config device creates a new volume with
its associated I/O mapping, stores it in the kernel memory region reserved for such infor-
mation (the volume mapping cloud), and persists it to the private regions of the affected
disk group via the vxdmp driver. The vxdmp driver alternates between all the available sd
paths that are visible to vxdmp. Those paths are routed via fibre-channel (fc) drivers to
their ultimate goal, the LUN. The information about the paths is gathered upon enabling
the vxconfigd. This takes place automatically at boot time.

On the way back, I/O errors that become visible to vxio because they cannot be rem-
edied by the vxdmp driver will be reported back to the vxspec driver, which passes them on
to the vcevent device for notification to all connected vxnotify clients

489

Software Overview

vxportal
vxspec
driver

config
device

vxassist

vxconfigd

vxprint vxdisk

vxnotify

vxrelocd

vcevent
device

vxconfigbackupd

volume
mapping

vxio

vxdmp

vxfs

mount mkfs

sd

fc

sd

fc

LUN

DMP tree

Kernel

User

Storage Foundation's main components and their mutual rela-Figure 15-1:
tionships

490

Storage Foundation Software stack

On the file system side, mkfs, mount, and any other user I/O is routed via the vxportal
or vxfs device drivers to vxio and on to vxdmp. It follows that as long as vxdmp is still wait-
ing for completion of a request, the vxio driver will never be informed about the problem
because vxdmp acts like an opaque wall between vxio and the lower device driver layers.
In the setup shown in the diagram, with two sd paths routed via two fc paths, one might
encounter the following a common problem:

- There is an underlying problem with the SAN infrastructure that keeps a LUN from
responding

- The fc driver will typically give the LUN about one minute to reply to a request, after
which the request is timed out. Note that the timeout can not be made arbitrarily
short because we are, after all, dealing with a network here, and networks sometimes
do have benign delays.

- A "non-fatal" error is reported after the timeout by the fc driver to the sd driver

- The sd driver, seeing only a non-fatal, i.e. recoverable error, retries up to the default
of five times. Note that the number of retries can not be arbitrarily reduced. We cer-
tainly do not want a machine to crash just because of a bad CRC in a block on e.g.
the swap device, do we? We would want the system to try hard and get the correct
data from the disk, then possibly revector the bad block to prevent further mishap.

- After five retries, each timed out after one minute, vxdmp will consider the path that
it was using for this particular I/O to be faulted and will retry the I/O on the other
path.

- The same thing happens on the second path, and after ten minutes vxio finally gets
the message that something is wrong in the I/O subsystem.

This sounds bad, but storage foundation is actually not to blame for any of this. The
problem comes from the very simplistic interface between fc and sd drivers, which tradi-
tionally only pass "OK" or errors like "non-fatal" or "fatal" to their parent. A much more
sophisticated driver interface is needed, and manufacturers have recently begun delivering
such drivers. We recommend moving to the new generation of drivers as soon as they are
viable for your enterprise. They really make a big difference.

491

Kernel Space Drivers

Technical Deep Dive

kernel space Drivers15.2
Veritas Volume Manager operates in both user space and kernel space: User mode programs
are run to create, modify, and delete virtual objects, which are used by kernel drivers as
replacements for physical disk media. The glue between user space programs and kernel
space device drivers is the ioctl system call interface, via which the user mode programs
can communicate their requests to the device drivers and thus effect changes to kernel
mode variables.

Several device drivers are added to the system when installing storage foundation. We
will discuss these drivers below. You can find them by searching for the string "^vx" in the
/etc/name_to_major file which maps the device drivers' major numbers to their respective
names. You can also run the modinfo command and search for " vx" in its output.

Finding all device drivers in a fully installed Storage Foundation 5.0 on Solaris 10
SPARC will get you a similar output to the following:

grep vx /etc/name_to_major
vxportal 267
vxdmp 269
vxio 270
vxspec 271
vxfen 274

modinfo|grep " vx"
 26 12b2b78 37f28 269 1 vxdmp (VxVM 5.0-2006-05-11a: DMP Drive)
 28 7c002000 337840 270 1 vxio (VxVM 5.0-2006-05-11a I/O driver)
 30 12e6ce0 d48 271 1 vxspec (VxVM 5.0-2006-05-11a control/st)
156 7bffce58 c30 267 1 vxportal (VxFS 5.0_REV-5.0A55_sol portal)
157 7b200000 1ba6d0 20 1 vxfs (VxFS 5.0_REV-5.0A55_sol SunOS 5)

ls -lL /dev/vx|grep "^c"
crw------- 1 root sys 271, 6 Aug 2 16:12 clust
crw------- 1 root sys 271, 0 Aug 2 16:10 config
crw-r----- 1 root sys 269, 262143 Aug 2 16:12 dmpconfig
crw------- 1 root sys 271, 3 Aug 2 16:12 info
crw------- 1 root sys 271, 2 Aug 2 16:18 iod
crw------- 1 root sys 271, 7 Aug 2 16:18 netiod
crw------- 1 root sys 271, 4 Aug 2 16:18 task
crw------- 1 root sys 271, 5 Aug 2 16:18 taskmon
crw------- 1 root sys 271, 1 Aug 2 16:18 trace
crw------- 1 root sys 271, 8 Aug 2 16:18 vcevent

492

Storage Foundation Software stack

As you can see, most of the device files in the /dev/vx directory are instances of the
vxspec device driver, which in our case has the major number 271. The only other driver is
called dmpconfig, and it has the same major number as the vxdmp driver (269).

Let's look at the individual drivers one by one:

vxportal
The vxportal device driver is used by vxfs file system utilities such as mkfs, mount, and
fsadm, by the storage checkpoint administration utilities fsckptadm and fsckpt_restore
and the quota utilities vxquotaon and vxquotaoff. Some commands may need to issue an
ioctl to the VxFS modules even if no VxFS file systems are currently mounted. This attempt
would fail because the vxfs device driver would not be active. For these cases the vxportal
driver supplies the required interface to talk to the vxfs modules regardless of actual file
systems being mounted.

vxdmp
The vxdmp driver has been discussed before and we would like to keep redundancy limited
to volumes. Suffice it to say that the /dev/vx/dmpconfig device file is used to send ioctls
to the vxdmp device driver to get and set operating modes etc. The individual devices reside
in the /dev/vx/dmp and /dev/vx/rdmp directories and are (of course) also instances of the
vxdmp device driver.

vxfen
This driver is used by the Veritas Cluster Server in order to ensure that data is unharmed in
split-brain situations (split-brain is a situation in which members of a cluster are unaware
of the other members' existence and erroneously take over their services, leading to unco-
ordinated write I/O on the shared storage. Because this corrupts data as well as metadata,
even disk group private regions, it is generally considered a Very Bad Thing™ and VCS goes
to great lengths to avoid this situation). It is not normally used in plain Volume Manger
setups without clustering, and is not further discussed here. We are planning a new book
about Veritas Cluster Server which will discuss this topic in detail.

vxspec
This device driver has multiple instances which all do quite different tasks, as you can see
from the multiple instances of its major number (271) in the output of the ls command
above. These instances are:

clust (vxclust)
This instance is used for clustered Volume Manager setups. It is used by vxconfigd,
vxclust, vxdctl and vxdg.

493

Kernel Space Drivers

config (vxconfig)
This device file is used for creating and modifying virtual objects. It was designed to be used
solely by the vxconfigd process and can only ever be opened by one process at a time. The
configuration daemon, vxconfigd, downloads volume configuration and address mapping
into the kernel, and creates, deletes, and modifies virtual objects via this device.

info (vxinfo)
This device gathers and clears performance statistics for volume, plex, subdisk, and disk
media objects from the kernel. It is used by very many of the VxVM utilities.

iod (vxiod)
This device is used to control the number and the behavior of the vxiod daemons. These
daemons are discussed elsewhere in this book. They are mostly used for increasing the
degree to which I/O can be done asynchronously.

netiod (vxnetiod)
This device is used by /usr/sbin/vxnetd in Veritas Volume Replicator (VVR) setups.

task (vxtask) / taskmon (vxtaskmon)
These device files are used to create and query kernel level tasks in VxVM.

trace (vxtrace)
This device is used by /usr/sbin/vxtrace to read all pre- and post-volume mapping I/Os,
error records etc. from the kernel. It is not used by any other process.

vcevent (vxvcevent)
This instance of vxspec delivers events to the process that opens the device and reads
from it. The most common user of this device file is the vxnotify command, which in turn
is used by the relocation daemon (vxrelocd) to relocate subdisks from failed disks to free
storage. In order to find failed disks vxrelocd spawns a vxnotify program which opens
the /dev/vx/vcevent driver file. As soon as the Volume Manager kernel notices any con-
figuration change, the vcevent driver passes that event to the listening process which can
then act on the data supplied with the event in whichever way it deems appropriate. For
instance, the vxnotify program will output the formatted data on its stdout channel.

Other clients for the vcevent device file are the vxvcvol and vxibc commands, which
are used in Veritas Volume Replicator (VVR) setups and are not discussed here.

494

Storage Foundation Software stack

vxio
This is probably the most important driver of VxVM, since it is this driver that does the
actual volume I/O mapping function. It reads the volume configuration that vxconfigd has
previously downloaded into the kernel using the vxconfig device, and uses it to map the
volume regions to their physical disk region counterparts. This driver uses the vxdmp driver
to actually do read and write I/Os instead of the plain sd drivers. In addition, the vxio
driver supports ioctls to inquire the process-ID of the configuration daemon vxconfigd,
to detach a plex from a volume, to obtain an information record about a volume and to
initiate atomic copy and verify read or verify write commands.

All volume block and character devices use the vxio driver and therefore the major
number of all files addressed by /dev/vx/*dsk/*/* show up as (in our case) 270.

user space processes15.3
Finding all Veritas Volume Manager processes in a running system is easy if you use the
ptools located in /usr/proc/bin: For instance, the pgrep command searches the process
table much more efficiently and much more precisely than any of the clumsy command
chains that look like this:

ps -ef | grep -v grep | grep "vx" | awk '{ print $1 }'

The latter is a truly horrible, yet nearly ubiquitous construct, which will not only fail to
find any process that happens to have the string "grep" anywhere in its command line, but
it also spawns three extra processes (two grep and one awk). This is especially nasty if you
recall that awk does in fact a much better job at grep'ing than grep does, so the two grep
commands are really just overhead. But the biggest performance hog is the ps command,
which uses the ancient approach of scanning the kernel's internal process table structure
instead of resorting to the modern and fast /proc file system. We have found the disgusting
contraption shown above in so many places that we cannot restrain ourselves from taking
the opportunity to show you a better way. If you never use this kind of command chain to
find a process then please consider yourself complimented by the authors; you are one out
of a thousand that does it right!

After this short rant, here's how you really get all Veritas Volume Manager processes.
The example below is from our Solaris 10 SPARC host running SF5.0 after a default instal-
lation:

pgrep -lf vx
52 vxconfigd -x syslog -m boot
1649 /sbin/sh - /usr/lib/vxvm/bin/vxconfigbackupd
1021 /sbin/sh - /usr/lib/vxvm/bin/vxrelocd root
204 /sbin/vxesd
851 /opt/VRTSsmf/bin/vxsmf.bin -p RootSMF -B
915 /sbin/sh - /usr/lib/vxvm/bin/vxrelocd root
928 /sbin/sh - /usr/lib/vxvm/bin/vxconfigbackupd
791 /opt/VRTSob/bin/vxsvc -r /etc/vx/isis/Registry -e

495

Reducing VxVM's Footprint

693 /opt/VRTSobc/pal33/bin/vxpal -a VAILAgent -x
797 /opt/VRTSobc/pal33/bin/vxpal -a StorageAgent -x
877 /opt/VRTSsmf/bin/vxsmf.bin -p ICS -c /etc/vx/VxSMF/VxSMF.cfg --parentversion
1.
1000 /sbin/sh - /usr/lib/vxvm/bin/vxcached root
1001 vxnotify -C -w 15
916 /sbin/sh - /usr/lib/vxvm/bin/vxcached root
1650 vxnotify
1022 vxnotify -f -w 15

Here's the more structured output from a ptree command:

ptree | grep vx
52 vxconfigd -x syslog -m boot
204 /sbin/vxesd
693 /opt/VRTSobc/pal33/bin/vxpal -a VAILAgent -x
791 /opt/VRTSob/bin/vxsvc -r /etc/vx/isis/Registry -e
797 /opt/VRTSobc/pal33/bin/vxpal -a StorageAgent -x
851 /opt/VRTSsmf/bin/vxsmf.bin -p RootSMF -B
 877 /opt/VRTSsmf/bin/vxsmf.bin -p ICS -c /etc/vx/VxSMF/VxSMF.cfg --parentve
915 /sbin/sh - /usr/lib/vxvm/bin/vxrelocd root
 1021 /sbin/sh - /usr/lib/vxvm/bin/vxrelocd root
 1022 vxnotify -f -w 15
916 /sbin/sh - /usr/lib/vxvm/bin/vxcached root
 1000 /sbin/sh - /usr/lib/vxvm/bin/vxcached root
 1001 vxnotify -C -w 15
928 /sbin/sh - /usr/lib/vxvm/bin/vxconfigbackupd
 1649 /sbin/sh - /usr/lib/vxvm/bin/vxconfigbackupd
 1650 vxnotify

There are many VxVM processes running — sixteen altogether, usually even more
(some of the agents failed to start on our system: actionagent and gridnode) — of which
many are not really necessary. The important ones are highlighted above. Being the frugal
sysadmin type, we should try to get rid of as many unnecessary processes as possible, for
the obvious reasons. But we need to be sure we know what we are doing, so what exactly
are all these processes doing?

reducing VxVm's footprint15.4
Let's take a look at all the processes in the output above and see what they do and if we
could just get rid of them without affecting operations. Note that you may lose support
from the vendor by doing so. Consider this a theoretical exploration rather than a hands-on
guide; we obviously do not take responsibility for anyone messing with the VxVM processes
on production machines!

496

Storage Foundation Software stack

Essential VxVM Processes15.4.1

vxconfigd
Do not stop this process. If it is stopped you can not use any of the other vx* commands any
more, since they all communicate with the VxVM kernel via this daemon. Note that I/O to
those volumes which are already started is not affected, but configuration changes — even
those of the simplest kind — cannot be initiated any more.

vxesd
This process (called the event source daemon) tracks events on the fibre-channel fabric and
triggers updates to the vxdmp device tree in case of a fabric reconfiguration. It is probably
wise to keep it running if you are allocating your storage from a SAN, but you can certainly
turn it off if you use pure SCSI disks (but then: who does?). The event source daemon uses
the Storage Networks Industry Association's (SNIA) HBA API to gather fabric topology
information and to correlate LUN paths information with World Wide Names and array port
IDs, so it is only useful if your array and/or HBA driver vendor supports this protocol.

vxrelocd with vxnotify
The relocation daemon, important for automatic restoration of the redundancy of volumes
which encountered I/O errors. The relocation daemon is actually a shell script which spawns
a vxnotify process with parameters that make vxnotify return only faults, and batch all
events together that are not separated by at least a 15-second interval without any events.
This vxnotify process connects to the vcevent driver (see above) to be informed whenever
any kind of fault is incurred. It then passes the fault as plain text to the calling vxrelocd
process, which operates on the output, finds the faulted disks and relocates the subdisks
from redundant volumes if the corresponding regions are still readable from another plex.
It also sends e-mail to the administrator during all stages of its recovery attempts. Some
administrators prefer to turn hot relocation off because they want to keep full control over
storage allocation at all times. This is best done by uncommenting the appropriate line in
the boot script (/lib/svc/method/vxvm-recover in Solaris 10).

Unessential VxVM Processes15.4.2

vxsvc
This is the server process for the vea GUI. It is based on the antique and arcane CORBA
(common object request broker architecture) and frequently takes several minutes to shut
down, resulting in excessive delays when a machine running it must be rebooted cleanly
(i.e. using init 6 rather than reboot). Unless your admins rely on the vea GUI for mainte-
nance it may be a good idea to shut this server process down. While the GUI does enable

497

Reducing VxVM's Footprint

the novice user to handle VxVM tasks in a relatively simple fashion, it often comes as a
negative surprise to most UNIX users that the vxsvc process uses a registry file (/etc/vx/
isis/Registry) that tries to emulate the much-hated Windows registry. Here are some lines
from the beginning of the file:

KEY „HKEY_LOCAL_MACHINE“ (
 KEY „Software“ (
 KEY „VERITAS“ (
[...]
 [REG_SZ] „DomainController“ = "<aHostname>";

That's right: HKEY_LOCAL_MACHINE! DomainController! REG_SZ! It is not immediately
obvious what kind of advantage the addition of a registry would bring to a UNIX machine.
But that is not the only Windows-like thing that vxsvc brought to UNIX. Its developers also
added a ".ini"-file to Storage Foundation. This is what it looks like on our host:

cat /etc/vx/isis/types.ini
[ALLOWED_MERGE_FAILURE]
vrts_vail* = "";
[…]

A true ".ini"-file, with the original Windows-ini-file syntax! On UNIX. No comment.
To summarize, the vxsvc process brings a lot of Windows to your UNIX machine.

Whether you will think twice about deploying it, or whether you will leap into the air over-
joyed about having The Power Of Windows™ on your UNIX system is of course up to you.

Keep in mind, however, that without vxsvc the new feature called Intelligent Storage
Provisioning (ISP) will not work, so if you actually need that you will have to accept vxsvc
on your machine.

Potentially Undesirable VxVM Processes15.4.3

vxsmf
Called the system management framework and very poorly documented, this process "is
primarily intended for developers and technical support staff. Customers should use this
utility only under the guidance of a technical support person" (from the man page). It starts
the initial Symantec Service Management Framework root process and all subordinate
processes that are configured for the root process. The system management framework is a
layer of communication and action daemons designed to enable inquiries and actions from
a central management workstation to and from all machines in a data center. For instance,
one could use the central management workstation to get a quick overview of the Storage
Foundation licensing situation. Another interesting feature is the ability to query all storage
layers as to how much of the storage arrays' total available storage is actually used for file
system data. And storage arrays may be easily migrated from the management workstation
because all connections from hosts to storage arrays are known to the central management

498

Storage Foundation Software stack

workstation and can be replicated on the target array, the volumes could be mirrored to the
target array, then the old mirrors removed from the source array etc.

This sounds truly great, if it works. What's not so great about it is that in order to
keep this communication infrastructure secure, a whole authentication and authorization
infrastructure must be built and maintained, a lot of processes are running on each host,
and a number of ports must be opened for the communication to take place. Because the
whole framework is (as of mid-2008, at least) rather poorly documented, it is not easy to
convince anyone to actually use this additional layer. If you are not using it, then it is prob-
ably a good idea to shut it down and disable it from starting upon reboot.

vxpal with StorageAgent, gridnode, actionagent, VAILagent etc.
This daemon runs or issues commands to Veritas Provider Access Layer agents ("pal" stands
for Provider Access Layer). The Provider Access Layer controls access to the software bus
that is used by the so-called "providers" to interoperate with remote management pro-
cesses like the GUI or the system management workstation outlined above. You can find
the list of providers using the following command:

pkginfo|grep "VRTS[^]*pr"
application VRTSddlpr VERITAS Device Discovery Layer Services Provider
application VRTSfspro VxFS Management Services Provider by Symantec
DataStorage VRTSmapro Veritas Storage Mapping Provider from Symantec
application VRTSvmpro VxVM Management Services Provider by Symantec
application VRTSvrpro VVR Management Services Provider by Symantec

vxconfigbackupd
The configuration backup daemon. It uses a vxnotify process, similar to the way that
vxrelocd does, to track changes to configurations in disk groups. Upon receiving a notifica-
tion of a change it dumps all of the configuration information for the disk group affected
to a backup directory (/etc/vx/cbr/bk/$DGID).

Originally a good idea, this feature is of rather dubious value today, as the concept has
been altered (as a workaround for a serious flaw) to the point of making it almost worth-
less. The idea was to provide a means of "going back in time" several versions if something
bad happened to your disk group, like if you accidentally deleted the wrong volume. Using
the configuration backup that was previously created by the vxconfigbackupd one could
reapply the private region contents of an earlier state of the disk group when the volume
still existed. For that reason, earlier versions of Storage Foundation (4.x) kept up to six
generations of disk group configuration backups. That turned out to be a problem, because
with the size of the configuration data being about 24MB (at the time of writing this),
having a lot of disk groups on a system would fill up the root file system very rapidly. For
instance, a system with 30 disk groups would hold 6 generations of 30 disk group configu-
ration backup copies at 24MB each, totalling over 4GB! This is less of a problem now but
is certainly was a few years ago. That was the flaw mentioned above.

So the number of generations was cut from six to one. That was the workaround.
The reason why it is almost useless is the following: Any configuration change is imme-

499

Reducing VxVM's Footprint

diately passed to the vxconfigbackupd, which will immediately overwrite the sole existing
backup of the configuration with the current configuration. I.e. the backup is overwritten
at the same time as the data is. There are only to ways to actually use the configuration
backup data: One is to recover the most recent version of the configuration backup from
tape. But that may not be up to data enough to use it. The other way — and that is what the
vendor now officially announces its purpose to be — is to use it as a backup solely in case
of unintended physical damage to the private region database, not for error recovery.

How does the vxconfigbackupd create its configuration backup? When vxconfigbackupd
determines that the configuration must be backup up it runs vxconfigbackup, which in turn
executes a number of commands, like vxdisk list, vxdctl support, vxprivutil dumpconfig
etc., and saves the output in flat files. These commands can take a nontrivial amount of
time and resources to execute, and generate about 24MB of data. Because the whole
process is done every time the configuration of a disk group changes it can be very waste-
ful to keep this daemon running. Some examples of when a configuration backup is trig-
gered include: creating a volume, resizing a volume, starting a volume, stopping a volume,
importing a disk group, deporting a disk group, adding a disk to or removing a disk from
a disk group. Weighing the likelihood of the configuration backup being able to help you
out versus the amount of overhead created by generating of the configuration backup is
up of course to you.

vxcached
The cache daemon vxcached catches notifications about cache volumes that are close to
being full, and resizes them automatically for those cache volumes where such behavior
was configured. A cache volume is a volume destined to hold the original data for incre-
mental snapshots of several volumes. Setting up a group of incremental snapshots to write
into a single cache volume is rather complicated and does not offer a huge advantage over
more conventional approaches so we have not discussed the use of shared cache snapshots
in this book.

